Na(+)-induced inward rectification in the two-pore domain K(+) channel, TASK-2.
نویسندگان
چکیده
TASK-2 is a member of the two-pore domain K(+) (K(2P)) channel family that is expressed at high levels in several epithelia, including the proximal tubule. In common with the other TASK channels, TASK-2 is sensitive to changes in extracellular pH. We have expressed human TASK-2 in Chinese hamster ovary cells and studied whole cell and single-channel activity by patch clamp. The open probability of K(2P) channels is generally independent of voltage, yielding linear current-voltage (I-V) curves. Despite these properties, we found that these channels showed distinct inward rectification immediately on the establishment of whole cell clamp, which became progressively less pronounced with time. This rectification was due to intracellular Na(+) but was unaffected by polyamines or Mg(2+) (agents that cause rectification in Kir channels). Rectification was concentration- and voltage-dependent and could be reversibly induced by switching between Na(+)-rich and Na(+)-free bath solutions. In excised inside-out patches, Na(+) reduced the amplitude of single-channel currents, indicative of rapid block and unblock of the pore. Mutations in the selectivity filter abolished Na(+)-induced rectification, suggesting that Na(+) binds within the selectivity filter in wild-type channels. This sensitivity to intracellular Na(+) may be an additional potential regulatory mechanism of TASK-2 channels.
منابع مشابه
Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel
Inwardly rectifying K+ channels conduct more inward than outward current as a result of voltage-dependent block of the channel pore by intracellular Mg2+ and polyamines. We investigated the molecular mechanism and structural determinants of inward rectification and ion permeation in a strongly rectifying channel, IRK1. Block by Mg2+ and polyamines is found not to conform to one-to-one binding, ...
متن کاملElectrostatics in the Cytoplasmic Pore Produce Intrinsic Inward Rectification in Kir2.1 Channels
Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetr...
متن کاملTuning the Voltage Dependence of Tetraethylammonium Block with Permeant Ions in an Inward-Rectifier K+ Channel
To understand the role of permeating ions in determining blocking ion-induced rectification, we examined block of the ROMK1 inward-rectifier K+ channel by intracellular tetraethylammonium in the presence of various alkali metal ions in both the extra- and intracellular solutions. We found that the channel exhibits different degrees of rectification when different alkali metal ions (all at 100 m...
متن کاملDAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord
The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K(+) current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K(+) channel (K2P) current in rat SG ...
متن کاملMechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels
Outward currents through Kir2.1 channels regulate the electrical properties of excitable cells. These currents are subject to voltage-dependent attenuation by the binding of polyamines to high- and low-affinity sites, which leads to inward rectification, thereby controlling cell excitability. To examine the effects of positive charges at the low-affinity site in the cytoplasmic pore on inward r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 288 1 شماره
صفحات -
تاریخ انتشار 2005